
Precise client-side protection against DOM-based Cross-Site Scripting

Ben Stock
FAU Erlangen-Nuremberg

ben.stock@cs.fau.de

Sebastian Lekies
SAP AG

sebastian.lekies@sap.com

Tobias Mueller
SAP AG

tobias.mueller07@sap.com

Patrick Spiegel
SAP AG

patrick.spiegel@sap.com

Martin Johns
SAP AG

martin.johns@sap.com

Abstract
The current generation of client-side Cross-Site Scripting
filters rely on string comparison to detect request values
that are reflected in the corresponding response’s HTML.
This coarse approximation of occurring data flows is in-
capable of reliably stopping attacks which leverage non-
trivial injection contexts. To demonstrate this, we con-
duct a thorough analysis of the current state-of-the-art in
browser-based XSS filtering and uncover a set of concep-
tual shortcomings, that allow efficient creation of filter
evasions, especially in the case of DOM-based XSS. To
validate our findings, we report on practical experiments
using a set of 1,602 real-world vulnerabilities, achiev-
ing a rate of 73% successful filter bypasses. Motivated
by our findings, we propose an alternative filter design
for DOM-based XSS, that utilizes runtime taint tracking
and taint-aware parsers to stop the parsing of attacker-
controlled syntactic content. To examine the efficiency
and feasibility of our approach, we present a practi-
cal implementation based on the open source browser
Chromium. Our proposed approach has a low false pos-
itive rate and robustly protects against DOM-based XSS
exploits.

1 Introduction
Ever since its initial discovery in the year 2000 [6],
Cross-Site Scripting (XSS) is an ever-present security
concern in Web applications. Even today, more than ten
years after the first advisory, XSS vulnerabilities occur
in high numbers [39] with no signs that the problem will
be fundamentally resolved in the near future. Further-
more, in recent years, DOM-based XSS, a subtype of the
vulnerability class that occurs due to insecure client-side
JavaScript, has gained traction, probably due to the shift
towards rich, JavaScript heavy Web applications. In a
recent study, we have shown that approximately 10% of
the Alexa Top 5000 carry at least one DOM-based XSS
vulnerability [18].

The design of protection measures against XSS has re-
ceived considerable attention. In its core, XSS is a client-
side security problem: The malicious code is executed in
the client-side context of the victim, affecting his client-
side execution environment. Hence, a well-suited place
to protect end users against XSS vulnerabilities is the
Web browser. Following this concept, several client-side
XSS filters have been developed over the years.

These contemporary client-side XSS filtering mech-
anisms rely on string-based comparison of outgoing
HTTP requests and incoming HTTP responses to detect
reflected XSS attack payloads. In essence, this string
comparison is an approximation of server-side data flows
that might result in direct inclusion of request data in the
HTTP response. While this approximative approach is
valid for server-based XSS vulnerabilities – the browser
has no insight on the server-side logic – it is unnecessar-
ily imprecise for client-side XSS issues.

In contrast to server-side problems, the complete
data flow within the browser from attacker-controlled
sources to the security-sensitive sinks into the browser’s
JavaScript engine occurs within one system and thus can
be tracked seamlessly and precisely. Based on this ob-
servation, we propose a different protection approach: A
client-side XSS filtering mechanism relying on precise
dynamic taint tracking and taint-aware parsers within the
browser.

To demonstrate the current limitations of the estab-
lished approaches – which focus mainly on stopping re-
flected XSS attacks – we first conduct an in-depth anal-
ysis of the current state-of-the-art in client-side XSS fil-
tering, with focus on the capabilities of thwarting DOM-
based XSS attacks (see Section 3). In course of this anal-
ysis, we uncover a set of conceptual weaknesses which,
taken together, render the existing techniques incapable
of protecting against the majority of client-side XSS at-
tacks (see Section 4). To practically validate our analy-
sis, we report on a fully automatic system to create XSS
attacks which evade the current protection mechanism:

Using a data set of 1,602 real-life DOM-based XSS vul-
nerabilities, we successfully created XSS vectors that by-
passed client-side filtering in 73% of all cases, affecting
81% of all vulnerable domains we found.

Motivated by the results of our experiments, we pro-
pose an alternative approach for client-side prevention
of DOM-based XSS: Using character-level taint tracking
in the browser we can precisely detect cases in which
attacker-controlled values end up in a syntactic parsing
context which might lead to the browser executing the
injected data as JavaScript. By enhancing the browser’s
HTML and JavaScript parsers to identify tokens that
carry taint markers, we can efficiently and robustly stop
injection attempts. To summarize, we make the follow-
ing contributions:

• Systematic analysis of conceptual shortcomings of
current client-side XSS filters: We report on a sys-
tematic investigation on the current state-of-the-art
client-side XSS filter, the XSS Auditor, and identify
a set of conceptual flaws that render the filter inca-
pable of effectively protecting against DOM-based
XSS attacks.

• Automatic filter bypass generation: To validate our
findings and to demonstrate the severity of the iden-
tified filter limitations, we built a fully automated
system to generate XSS payloads which bypass the
string comparison based XSS filter. Our system
leverages the precise flow information of our taint-
enhanced JavaScript engine and our detailed knowl-
edge on the Auditor’s functionality to create ex-
ploit payloads that are tailored to a vulnerability’s
specific injection context and the applicable filter
weakness. By practically applying our system to
a set of 1,602 real-world DOM-based XSS vulnera-
bilities, we achieved a success rate of 73% success-
ful filter bypasses.

• Robust protection approach, utilizing client-side
taint propagation: Based on the identified weak-
nesses in the established XSS filtering approaches,
we propose an alternative protection measure which
is designed to address the specific characteris-
tics of DOM-based XSS. Through combining a
taint-enhanced browsing engine with taint-aware
JavaScript and HTML parsers, we are able to pre-
cisely track the flow of attacker-controlled data into
the parsers. This in turn enables our system to reli-
ably detect and stop injected code on parse time.

2 Technical Background
In the following, we briefly discuss DOM-based Cross-
Site Scripting and shed light on the technical basis used
for this work, namely a taint-aware browsing engine.

2.1 DOM-based Cross-Site Scripting
Cross-Site Scripting (XSS) is a term describing attacks
where the adversary is able to inject his own script code
into a vulnerable application, which is subsequently ex-
ecuted in the browser of the victim in the context of
this application. In contrast to the server-side variants
of XSS, namely reflected and persistent, the term DOM-
based Cross-Site Scripting (or DOM-based XSS) sub-
sumes all classes of vulnerabilities which are caused by
insecure client-side code. The term itself was coined by
Klein in 2005 [16]. These issues come to light when un-
trusted data is used in a security-critical context, such as
a call to eval. In the context of DOM-based XSS, this
data might originate from different sources such as the
URL, postMessages [38] or the Web Storage API.

2.2 Browser-level Taint Tracking
One of the underlying technical cornerstones of this pa-
per is the taint-enhanced browsing browsing engine we
developed for CCS 2013 [18]. This engine allows precise
tracking of data flows from attacker-controlled sources,
such as document.location, to sinks, such as eval.

Our implementation, based on the open source
browser Chromium, provides support for tracking infor-
mation flow on the granularity of single characters by
attaching a numerical value to identify the origin of the
character’s taint. This taint marker is propagated when-
ever string operations are conducted and is also persisted
between the two realms of the rendering component, i.e.,
Blink, and the V8 JavaScript engine.

As this part of our system is not one of the paper’s
major contributions, we omit further details for brevity
reasons and refer the reader to the aforementioned paper.

3 Current Approaches for Client-side XSS
Filtering

In this section we investigate the current in-browser tech-
niques used to detect and prevent XSS attacks. More
specifically, we describe the concepts of the Firefox plu-
gin NoScript [20], Internet Explorer’s XSS Filter [29]
and Chrome’s XSS Auditor [2].

3.1 Regular-expression-based Ap-
proaches: NoScript and Internet
Explorer

One of the first mechanisms on the client side to pro-
tect against XSS attacks was introduced by the NoScript
Firefox Plugin [22] in 2007. NoScript utilizes regular ex-
pressions to filter outgoing HTTP requests for potentially
malicious payloads. If one of the regular expressions
matches, the corresponding parts are removed from the
HTTP request. The malicious payload will thus never

reach the vulnerable application and hence an attack is
thwarted. Nevertheless, as described in NoScript’s fea-
ture list, this potentially leads to false positives [21]
due to its aggressive filtering approach. NoScript works
around this issue by prompting the user whether to re-
peat the request, this time disabling the protection mech-
anism. While this seems to be a valid approach for
NoScript’s security-aware users, it is not acceptable as
a general Web browser feature, as many studies have
shown that an average user is not able to properly react
to such security warnings [9, 13, 34].

In order to tackle this problem Microsoft slightly ex-
tended NoScript’s approach and integrated it into Inter-
net Explorer [29]. Similar to NoScript, IE’s XSS fil-
ter utilizes regular expressions to identify malicious pay-
loads within outgoing HTTP requests. Instead of remov-
ing the potentially malicious parts from a request, the
filter generates a signature of the match and waits for the
HTTP response to arrive at the browser. If the signature
matches anything inside the response, i.e., if the payload
is also contained within the response, the filter removes
the parts it considers to be suspicious. Thus, attacks are
only blocked if the payload is indeed contained in the re-
sponse and, hence, depending on the situation, false pos-
itives are less frequent. In fact, avoiding false positives is
one of the filter’s many design goals [30], even if this re-
sults in a higher false negative rate, as Microsoft’s David
Ross states: “Thus, the XSS Filter defends against the
most common XSS attacks but it is not, and will never
be, an XSS panacea.” [30].

In 2010, Bates et al. [2] demonstrated that regular-
expression-based filtering systems have severe issues and
proposed a superior approach in the form of the XSS Au-
ditor, which has been adopted by the WebKit browser
family (Chrome, Safari, Yandex).

3.2 State-of-the-Art: The XSS Auditor
Based on the identified weaknesses of regular-
expression-based XSS defenses, Bates et al. proposed
the XSS Auditor – a new system that is “faster, protects
against more vulnerabilities, and is harder for attackers
to abuse” [2]. Up to now, the XSS Auditor constitutes
the state-of-the art in client-side XSS mitigation, albeit
focusing mainly on reflected XSS.

As we will demonstrate in this paper, the XSS Auditor
also has shortcomings, especially related to DOM-based
XSS attacks. Before we explore the limitations of the
system in the next section, we provide an overview of
the Auditor’s protection mechanism.

One of the key differences between Chrome’s XSS
Auditor and previous filter designs is the filter’s place-
ment within the browser architecture. Instead of apply-
ing regular expressions on the string representations of
the HTTP requests or responses, the Auditor is placed

between the HTML parser and the JavaScript engine [2].
The idea behind this placement is, that an attacker’s pay-
load has to be parsed by the HTML parser to be trans-
ferred to the JavaScript engine where the injected pay-
load is being executed.

In order to block XSS attacks, the Auditor receives
each token generated by the HTML parser and checks
whether the token itself or some of its attributes are con-
tained in either the request URL or the request body.
If so, the filter considers the token to be injected and
replaces JavaScript or potentially harmful HTML at-
tributes with a benign value. Such a benign value is
a payload that has no effect, such as about:blank,
javascript:void(0) or an empty string. The injected
fragments will thus not be passed to the JavaScript en-
gine and hence attacks are prevented.

The main design goals of the filter are to avoid false
positives and to minimize performance impact. Before
demonstrating that these goals severely impact the filter’s
detection capabilities, we will first provide details on the
detection algorithm (simplified to satisfy space and read-
ability constraints):

1. Initialization (For document fragments)
(a) Deactivate the filter

2. Initialization (For each full document)
(a) Fully decode the request URL
(b) Fully decode the request body
(c) Check if request could contain an injection

i. If not, deactivate the filter
ii. Otherwise continue

3. For each start token in the document do...
(a) Check and delete dangerous attributes

i. Delete injected event handlers
ii. Delete injected JavaScript URLs

(b) Conduct tag specific checks
4. For each script token in the document do...

(a) Check and delete injected inline code

As soon as the so-called HTMLDocumentParser is
spawned by Chrome, an initialization routine of the XSS
Auditor is called. The parser can either be invoked
for parsing document fragments or complete documents.
While the XSS filter is deactivated for document frag-
ments, it guesses whether an injection attack is likely to
be present for full documents. If either the URL or the re-
quest body contains one of the characters shown in List-
ing 1, the filter is activated. If none of these characters
is found, the filter assumes the browser not being under
attack and skips the complete filtering process.

If, on the other hand, one of the characters mentioned
in Listing 1 is present in the request the Auditor in-
vestigates every token within the document for injected
values that might cause script execution. This process

Listing 1 Required characters to activate the filter
static bool isRequiredForInjection(UChar c)

{

return (c == ’\’’ || c == ’"’ ||

c == ’<’ || c == ’>’);

}

is threefold: First the Auditor looks for dangerous at-
tributes, second it conducts tag specific checks for certain
attributes and third it filters injected inline scripts.
Dangerous Attributes are, in the view of the Auditor,
attributes that either contain a JavaScript URL or have
the name of an inline event handler (onclick, onload,
etc.) as these attributes can enable XSS attacks. If such
an attribute is found, the Auditor searches for it within
the corresponding request. If a match is found, the fil-
ter assumes the attribute to be injected and either deletes
the complete attribute value in case of event handlers or
replaces the JavaScript URL with a benign URL.
Tag-specific filtering Besides event handlers and at-
tributes containing JavaScript URLs, other tag specific
attributes that need to be filtered exist. An attacker could,
for example, inject a script tag and use the src attribute
to load an external script file. Hence, for any script to-
ken, the Auditor additionally checks the legitimacy of the
src attribute. In total, the Auditor conducts such checks
for 18 additional attributes contained in 11 tokens (script,
object, param, embed, applet, iframe, meta, base, form,
input and button).
Filter inline scripts Whenever the Auditor encounters
a script tag, it also validates whether the content between
opening and closing tag has been injected. If the content
can be found in the request, it is replaced with an empty
string.

4 Limitations of String-based XSS Filters
In this section we report on a detailed analysis we con-
ducted to assess the XSS Auditor’s protection capabili-
ties with a focus on DOM-based XSS. Although the XSS
Auditor was designed to stop reflected Cross-Site Script-
ing attacks, it is also the most advanced and deployed
filter against DOM-based XSS attacks. In the following,
we therefore analyze issues related to the concept of the
Auditor, which impair its capabilities of stopping DOM-
based XSS attacks. In doing so, we show the arising need
for a filter capable of stopping DOM-based XSS attacks.

4.1 Scope-related Issues
In general, the Auditor is called whenever potentially
dangerous elements are encountered during the initial
parsing of the HTTP response. These are, however,
not the only situations in which attacker-controlled data
might end up being interpreted as code. In this section,

we explore situations in which the filter is not active and
hence does not protect against attacks.
eval As mentioned earlier, the Auditor is placed be-
tween the HTML parser and the JavaScript engine to in-
tercept potential XSS payloads. Still, not every DOM-
based XSS attack needs to go through the HTML parser.
If a Web site invokes the JavaScript function eval with
user-provided data, the execution will never pass the
HTML parser. Therefore, the Auditor will never see a
malicious payload that an attacker injected into a call to
eval. As we will demonstrate later, eval is commonly
used in Web applications.
innerHTML While script tags inserted via
innerHTML are not executed, it is still possible to
execute JavaScript via inline event handlers. Hence,
innerHTML is also prone to XSS attacks. In earlier
versions of the Auditor content parsed via innerHTML

was also filtered. Google later experienced some per-
formance drawbacks in innerHTML-heavy applications
[17] and as a consequence, the Auditor is nowadays dis-
abled for document fragment parsing which is invoked
upon an assignment to innerHTML.
Direct assignment to dangerous DOM properties
Besides eval and innerHTML it is also possible to trig-
ger the execution of scripts without invoking a HTML
parsing process as a few examples in Listing 2 show. As
no HTML parsing takes place in these cases, the XSS
Auditor is never invoked. Hence, if a Web application
assigns a user-controlled value to such a DOM property,
an attacker is able to evade the filter.

Listing 2 Examples for dangerous DOM properties
var s = document.createElement("script");

s.innerText = "myFunction(1)"; // 1.

s.src = "http://example.org/script.js"// 2.

var i = document.createElement("iframe");

i.src = "javascript:myFunction(1)" // 3.

var a = document.createElement("a");

a.href = "javascript:myFunction(1)" // 4.

Second order flows When investigating a token, the
Auditor always validates whether a suspicious value was
contained within the preceding HTTP request’s URL or
body. As demonstrated by Hanna et al. [10], second or-
der flows are relevant for DOM-based XSS. So, for ex-
ample, if a value is written into LocalStorage within one
request/response cycle, it can be used to cause a DOM-
based XSS attack in another request/response pair. As
the Auditor only investigates the last request, it will not
find the value sent with the second-last request. Local-
Storage is only one of many ways to persist data across
multiple HTTP requests as Cookies, WebStorage or the
File API exist nowadays.

Alternative attack vectors It is not sufficient to only
check the URL and the request body in order to pre-
vent DOM-based XSS attacks. Multiple other sources
of attacker-controllable data exist which could be abused
to inject malicious content into an application. Examples
are the PostMessage API, the window.name attribute, or
the document.referer attribute. As the Auditor does
not take these sources into account, they can be used to
evade the filter.

Furthermore, Bojinov et al. demonstrated that data can
be injected by an attacker via alternative communication
channels [4]. Thus, so-called cross-channel scripting at-
tacks also bypass the XSS Auditor.
Unquoted attribute injection During initialization,
the Auditor checks whether filtering is necessary by ver-
ifying the presence of the characters shown in Listing 1.
In doing so, it implicitly assumes that an attack is not
possible without these characters. This assumption, how-
ever, is wrong. In Listing 3 we show a common vulnera-
bility and the corresponding attack (note: the value of the
id attribute is not surrounded by quotes). In this example,
the payload does not make use of the required characters.
Normally, the XSS Auditor would block the src attribute
containing the JavaScript URL. In this case, however, it
does not conduct any checks as it is deactivated.

Listing 3 Unquoted Attribute injection
var id = location.hash.slice(1);

var code = "<iframe id=" + id + " [...]>";

code += "</iframe>";

document.write(code);

// attack payload within URL

"//example.org/#1 src=javascript:eval(name)"

4.2 String-matching-related Issues
In the following we explore the limits of the implemented
string matching algorithms. Whenever the Auditor finds
a potentially dangerous element or attribute, it verifies
whether the corresponding string representation can be
found in the request. If an attacker is able to mislead
the string-matching algorithm, the filter can be bypassed.
Hence, the precision of this process determines the fil-
ter’s effectiveness and as a result its false positive and
false negative rates.

4.2.1 Partial Injections

One of the assumptions the Auditor makes is that an at-
tacker has to inject a complete tag or attribute to success-
fully launch an attack. As a consequence the filter always
aims to find the complete tag or the complete attribute
within the request. While this approach reduces false

positives as it is very unlikely that an application con-
tains an existing tag or attribute in its URL legitimately,
it does not regard application-specific scenarios. This as-
sumption leads to potential problems in three different
cases:
Attribute Hijacking One of the first things the Audi-
tor does is to check whether a dangerous attribute was
injected into the application. Hence, whenever it dis-
covers a dangerous attribute during the parsing process it
regenerates the string representation of the attribute and
matches it against the URL and the request body. List-
ing 4 shows the string generation process:

Listing 4 Attribute string matching
// current start token

<iframe [...] onload="alert(’example’)">

// Step 1: extract the dangerous attribute

onload="alert(’example’)"

// Step 2: Truncate after 100 characters

onload="alert(’example’)"

// Step 3: Truncate at a terminating char

onload="alert(’

After detecting a potentially dangerous attribute the
Auditor extracts its decoded string representation. Then,
it truncates the attribute at 100 chars to avoid the com-
parison of very long strings. It finally truncates the string
at one of seven so-called terminating characters (this is
done to detect attacks, that we will cover later). The re-
sulting string is then matched against the URL. Obvi-
ously, the resulting string always contains the name of
the potentially dangerous attribute. Hence, the under-
lying assumption here is that the attacker always has to
inject the attributes herself. In real-world applications,
however, attributes can often be hijacked by an attacker
as shown in Listing 5. Although the onload attribute
is a dangerous event handler attribute, the Auditor will
not discover it within the URL as the onload attribute’s
name is hardcoded within the application and not in-
jected by the attacker.

Listing 5 Attribute & Tag hijacking vulnerability
var h = location.hash.slice(1);

var code = "<iframe onload=’" + h + "’"

code += "[...]></iframe>";

document.write(code);

//attack for attribute hijacking

"//example.org/#alert(’example’)"

//attack for tag hijacking

"//example.org/#’ srcdoc=’...’"

Tag Hijacking After checking for dangerous attributes
the Auditor conducts tag specific attribute checks.
Matching all attributes of all tokens within an HTML

document against the URL and request body, however,
can be a very time consuming and error-prone task.
Therefore, the auditor only matches an attribute against
the URL if it can find the tag’s name in the URL. For
example, if the filter investigates an iframe token it vali-
dates whether the sequence <iframe is contained in the
request before matching the src or srcdoc attribute 1.
Hence, if the injection point of a vulnerability lies within
such a tag, the attacker can hijack the tag and inject ad-
ditional attributes to it. As the tag itself is hardcoded the
Auditor will skip any of its checks for specific attributes.
An example of this attack is provided in Listing 5.
In-Script Injections Another vulnerability that is not
detectable by the XSS Auditor is an injection inside of
an existing inline script. As described in Section 3.2,
whenever the filter encounters a script tag, it matches the
complete inline content of the script against the request.
Real-world Web applications however often make use of
dynamically generated inline scripts made up from user-
controllable input mixed with hardcoded values. Hence,
instead of injecting a script tag via the URL an attacker
is able to simply inject code into an existing dynamic in-
line script. As a consequence searching for the complete
script content within sources of user input will not be
successful.

4.2.2 Trailing Content

A very similar problem to partial injections is trailing
content. When real-world Web applications write in-
put to the document, they do not simply write one sin-
gle value coming from the user but rather use a string
that was constructed from hardcoded values as well as
potentially attacker-controlled values. Listing 6 shows a
real-world example.

Listing 6 An example of String construction
var code = "<iframe src=’//example.org/";

code += getParamFromURL("page_name");

code += ".html’></iframe>";;

document.write(code);

// attack payload:

"’ onload=’alert(1);foo"

// resulting code

"<iframe src=’//example.org/’

onload=’alert(1);foo.html’>"

Note, that the injection point is inside the src attribute
of the iframe tag. Within this src attribute, the attacker-
controllable input starts in the middle of the attribute

1For iframe.srcdoc the tag hijacking attack is not possible anymore,
as concurrent research discovered this issue and reported it to Google.
Upon the report Google changed the behavior for srcdoc. Nevertheless,
for any other of the 18 special attributes, tag hijacking still is an issue

(after //example.org/) and some more content is fol-
lowing the injection point (.html). When crafting an
attack, the attacker is able to use the trailing content
within the payload to confuse the string matching pro-
cess. Despite the fact that the Auditor is aware of this
issue (source code comments indicate this) and defends
against it, the current defenses are not able to reliably
detect which parts are actually injected by the attacker
and which parts are hardcoded within the Web applica-
tion. We found four bypasses which allow an attacker to
exploit this problem in different and partly unexpected
ways. Due to the high complexity and the limited space,
we omit a detailed explanation here.

4.2.3 Double Injections

Another conceptional flaw of string-matching-based ap-
proaches is the inability to discover concatenated values
coming from more than one source of user input. As we
have shown in previous work [18], a call to a security
sensitive function contains on average three potentially
attacker provided substrings. Listing 7 shows an exam-
ple for such a double injection.

Listing 7 An example of double injection
var id = getParamFromURL("id");

var name = getParamFromURL("name");

var code = "<iframe id=’" + id + "’";

code += " name=’" + name +"’";

code += "[...]></iframe>";

document.write(code);

// attack

id="’/><script>void(’"

name="’);alert(1)</script>"

// resulting code

<iframe id=’’/>

<script>void(’ name=’);alert(1)</script>

[...]></iframe>

As the call to document.write contains two injection
points (id, name) an attacker is able to split the payload.
A specially crafted set of inputs, as shown in the List-
ing, therefore leads to the creation of a valid script tag
that is a combination of both attacker inputs. In this case,
the Auditor’s string matching algorithm would search for
void(’name=’);alert(1) within the request. Finding
this value in the URL, however, is not possible as the
’ name =’ part is hardcoded and not originating from
the URL. Furthermore, the attacker is able to arbitrarily
change the order in which the values appear within the
URL. Hence, double injections are a severe conceptional
problem for string-matching-based approaches. In total,
we identified three different classes of double injection.
The first class has been explained in the example above.
A call to document.write contains two injection points

and the injected values are independent from each other.
Very similar to this approach, the double injection pattern
also applies to situations in which a single value is used
twice within a single call to a security sensitive function.
Finally, double injection attacks can be conducted if sub-
sequent calls to document.write are made containing
attacker-controllable values.

4.2.4 Application-specific Input Mutation

Another assumption of the XSS Auditor is that input of
the user always reaches the parser without any modi-
fications. If even one character of the input changed,
the string matching algorithm will fail to find the pay-
load and hence is not able to block the resulting attack.
Application-specific encoding functions or data formats,
therefore, lead to situations in which the filter can be by-
passed.

4.3 Practical Experiments
As previously demonstrated we found numerous condi-
tions under which the protection mechanisms of the XSS
Auditor can be evaded, especially with respect to DOM-
based Cross-Site Scripting. In order to assess the sever-
ity of the identified issues for real-world applications, we
conducted a practical experiment. We used the method-
ology applied for our previous paper [18] to collect a
set of 1,602 unique real-world DOM-based XSS vulner-
abilities on 958 domains. We then built a bypass gen-
eration engine to verify whether a certain vulnerability
allows employing one of the bypassing techniques de-
scribed above.

Using our taint-aware infrastructure we are able to
determine the exact injection context of a vulnerabil-
ity. As soon as our infrastructure detects a call to a se-
curity sensitive sink such as document.write, eval,
or innerHTML, it stores the string value and the exact
taint information. Using a set of patched HTML and
JavaScript parsers, we can exactly determine the location
of the injection point. Using this data, we cannot only
give an indication for a filter evasion possibility, but also
generate an exact bypass that takes the injection point’s
context as well as the specific flaws of the Auditor into
account. Applying this technique we compiled a set of
bypasses that we evaluated against the vulnerabilities.

In doing so, we were able to bypass the filter for 73%
of the 1,602 vulnerabilities, successfully exploiting 81%
of the 958 domains in our initial data set.

4.4 Analysis & Discussion
As demonstrated by our practical experiments, the XSS
Auditor – which aims at stopping reflected Cross-Site
Scripting – can not stop DOM-based XSS attacks in

the aforementioned cases. We therefore believe that ad-
ditional defenses are necessary to combat this type of
Cross-Site Scripting. Furthermore, the results of our
analysis lead us to believe that the design of the XSS Au-
ditor is prone to being bypassed in certain reflected XSS
attack scenarios which are related to string-based match-
ing issues. Since the focus of our work is on DOM-based
XSS, we leave the investigation of this assumption to fu-
ture work.

In our analysis, we identified two conceptual issues
that limit the Auditor’s approach in detecting and stop-
ping DOM-based XSS attacks.
Placement One of the Auditor’s strengths compared to
Internet Explorer’s and NoScript’s approach is its place-
ment between the HTML parser and the JavaScript en-
gine. This way the Auditor does not need to approximate
the browser’s behavior during the filtering process. As
we have shown in Section 4.1 the current placement is
prone to different attack scenarios which are not taken
into account by the filter. Currently the Auditor is not
able to catch JavaScript-based injection attacks and situ-
ations in which HTML parsing is not conducted prior to
a script execution.
String matching Even if it would be possible to ex-
tend the Auditor’s reach to the JavaScript engine and the
so-called DOM bindings, the string matching algorithm
is another conceptual problem that will be very difficult
if not impossible to solve. In order to cope with the situa-
tion the XSS Auditor introduced many additional checks
and optimizations to thwart attacks. Nevertheless and de-
spite the fact that a lot of bug hunters regularly inves-
tigate the filter’s inner workings, we were able to find
13 bypasses targeting the string matching algorithm. All
the mentioned problems will not disappear as employing
string matching is inherently imprecise.

5 Preventing Client-side Injection Attacks
during Parse-time

As the previous section has shown, current concepts of
Cross-Site Scripting filters are not designed to thwart
DOM-based XSS and, thus, are not sufficient to protect
users against these kinds of attacks. In this section, we
discuss the methodology behind our newly proposed fil-
ter as well as the corresponding policy considerations.
We then go into detail on the issue of handling postMes-
sages in our filter and finally outline the technical chal-
lenges we had to overcome to implement the concept into
a real-world browser.

5.1 Methodology Overview
As we have demonstrated in Section 4.2, client-side XSS
filters relying on string comparison lack the required pre-
cision for robust attack mitigation. String comparison

as an approximation of occurring data flows is a neces-
sary evil for flows that traverse the server. For DOM-
based XSS, this is not the case: The full data flow oc-
curs within the browser’s engines and can thus be ob-
served precisely. For this reason, we propose an alterna-
tive protection mechanism that relies on runtime tracking
of data-flows and taint-aware parsers and makes use of
two interconnected components:

• A taint-enhanced JavaScript engine that tracks the
flow of attacker-controlled data.

• Taint-aware JavaScript and HTML parsers capable
of detecting generation of code from tainted values.

This way our protection approach reliably spots
attacker-controlled data during the parsing process and
is able to stop cases in which tainted data alters the exe-
cution flow of a piece of JavaScript. In the following, we
discuss the general concept and security policy, whereas
we go into more detail on the implementation in Sec-
tion 5.4 and investigate the implications of our proposed
filtering approach in Section 6.1.

5.2 Precise Code Injection Prevention
As we outlined in the previous section our protection ap-
proach relies on precise byte-level taint tracking.

In the following we give a detailed overview on the
necessary changes we performed in order to implement
our filtering approach. More specifically, we made
changes to the browser’s rendering engine, the JavaScript
engine and the DOM bindings, which connect the two
engines.
JavaScript Engine When encountering a piece of
JavaScript code, the JavaScript engine first tokenizes it
to later execute it according to the ECMAScript language
specification.

While it is a totally valid use case to utilize user-
provided data within data values such as String, Boolean
or Integer literals, we argue that such a value should
never be turned into tokens that can alter a program’s
control flow such as a function call or a variable as-
signment. We therefore propose that the tokenization
of potentially attacker-provided data should never result
in the generation of tokens other than literals. As our
JavaScript engine is taint-aware, the parser is always able
to determine the origin of a character or a token. Hence,
whenever the parser encounters a token that violates our
policy, execution of the current code block can be termi-
nated immediately.
Rendering Engine Besides injecting malicious
JavaScript code directly into an application, attackers
are able to indirectly trigger the execution of client-side
code. For example, the attacker could inject an HTML
tag, such as the script or object tag, to make the browser

fetch and execute an external script or plugin applet.
Hence, only patching the JavaScript engine is not suf-
ficient to prevent DOM-based XSS attacks. To address
this issue we additionally patched the HTML parser’s
logic on how to handle the inclusion of external content.
When including active content we again validate the
origin of a script’s or plugin applet’s URL based on
our taint information. One possible policy here is to
reject URL containing tainted characters. However, as
we assess later, real-world applications commonly use
tainted data within URLs of dynamically created applets
or scripts. Therefore, we allow tainted data within such
a remote URL, but we do not allow the tainted data to
be contained either in the protocol or the domain of the
URL. The only exemption to this rule is the inclusion
of external code from the same origin. In these cases,
similar to what the Auditor does, we allow the inclusion
even if the protocol or domain is tainted. This way, we
make sure that active content can only be loaded from
hosts trusted by the legitimate Web application.
DOM bindings Very similar to the previous case the
execution of remote active content can also be triggered
via a direct assignment to a script or object tag’s src at-
tribute via the DOM API. This assignment does not take
place within the HTML parser but rather inside the DOM
API. We therefore patched the DOM bindings to imple-
ment the same policy as mentioned above.
Intentional Untainting As our taint-aware browser re-
jects the generation of code originating from a user-
controllable source, we might break cases in which such
a generation is desired. A Web application could, for ex-
ample, thoroughly sanitize the input for later execution.
In order to enable such cases we offer an API to taint
and untaint strings. If a Web application explicitly wants
to opt-out of our protection mechanism, the API can be
used to completely remove taint from a string.

5.3 Handling Tainted JSON
While our policy effectively blocks the execution of
attacker-injected JavaScript, only allowing literals causes
issues with tainted JSON. Although JavaScript provides
dedicated functionality to parse JSON, many program-
mers make use of eval to do so. This is mainly due to
the fact that eval is more tolerant whereas JSON.parse
accepts only well-formed JSON strings. Using our pro-
posed policy we disallow tokens like braces or colons
which are necessary for parsing of JSON. In a prelimi-
nary crawl, we found that numerous applications make
use of postMessages to exchange JSON objects across
origin boundaries. Hence, simply passing on completely
tainted JSON to the JavaScript parser would break all
these applications whereas allowing the additional to-
kens to be generated from parsing tainted JSON might
jeopardize our protection scheme. In order to combat

these two issues we implemented a separate policy for
JSON contained within postMessages. Whenever our
implementation encounters a string which heuristically
matches the format of JSON, we parse it in a tolerant
way and deserialize the resulting object. In doing so, we
only taint the data values within the JSON string. This
way incompatible Web applications are still able to parse
JSON objects via eval without triggering a taint excep-
tion. Since we validated the JSON’s structure, malicious
payloads cannot be injected via the JSON syntax. If a
deserialized object’s attributes are used later to generate
code, they are still tainted and attacks can be detected. If
for some reason our parser fails, we forward the original,
tainted value to the postMessage’s recipient to allow for
backwards compatibility.

5.4 Implementation
To practically validate the feasibility of our protection
approach we conducted a prototypical implementation
based on the open source browser, Chromium, version
30.0.1561.0. This section will provide details on a se-
lection of issues we encountered when implementing the
desired protection capabilities.

Equality problem for tainted strings: We had to de-
cide when a tainted string should be considered equal
to an untainted version as this requirement is dependent
on the situation at hand. Under certain circumstances
we do want to consider them as being equal but there
are also conditions under which equality should not be
given. For example, when creating DOM elements from
tainted strings, we do want a tainted string to be equal
to an untainted version because the tainted string should
match the untainted version for the correct element to be
created. If the strings would not match, the correct ele-
ment could not be looked up and hence an unknown (or
custom) element would be created. On the other hand,
when looking up a string in a cache, we do not want the
tainted version to be equal to an untainted one. If that
were the case, we might loose taint as we retrieve the un-
tainted version. For performance reasons WebKit uses
addresses of certain strings it considers to be unique to
perform an equality check. We thus needed to imple-
ment a fallback method for the equality check on tainted
strings if we desire a tainted string to be equal to its un-
tainted version.

Attaching taint to JavaScript Tokens: To prevent
code strings from untrusted sources to generate code, we
needed to forward taint information from strings to these
generated tokens. We thus needed to broaden the inter-
face not only leading to the JavaScript lexer but also to
the parser. V8 not only has a parser for the JavaScript
language but also for JSON to efficiently read serialized
data. While it was conceptually easy to attach another bit
to the generated tokens, a sophisticated buffering logic

inside V8 needed to be made taint aware. A variety of
CharacterStream classes buffer characters of an input
stream to be consumed by the scanner and also enables
it to push back characters if it did not accept them. To
enable taint propagation all classes of an inheritance hi-
erarchy at least three levels deep needed to be changed.

6 Practical Evaluation
After the implementation of our modified engine as well
as the augmented HTML and JavaScript parsers we eval-
uated our approach in three different dimensions. In this
section we shed light on the compatibility of our ap-
proach with the current Web, discuss its protection ca-
pabilities, and evaluate its performance in comparison to
the vanilla implementation of Chromium as well as other
commonly used browsers. Finally, we summarize the re-
sults of said evaluation and discuss their meaning.

6.1 Compatibility
While a secure solution seems desirable, it will not be
accepted by users if it negatively affects existing appli-
cations. Therefore, in the following, we discuss the
compatibility of our proposed defense to real-world ap-
plications. We differentiate between the two realms in
which our approach is deployed – namely the JavaScript
parser and the HTML/DOM components – and answer
the questions:

1. In what fraction of the analyzed applications do we
break at least one functionality?

2. How big is the fraction of all documents in which
we break at least one functionality?

3. How many of these false positives are actually
caused by vulnerable pieces of code which allow an
attacker to execute a Cross-Site Scripting attack?

6.1.1 Analysis methodology

To answer these questions for a large body of domains,
we conducted a shallow crawl of the Alexa Top 10,000
domains (going down one level from the start page) with
our implemented filter enabled. Rather than just block-
ing execution we also sent a report back to our backend
each time the execution of code was blocked. Among
the information sent to the backend were the URL of the
page that triggered the exception, the exact string that
was being parsed as well as the corresponding taint in-
formation. Since we assume that we are not subject to
a DOM-based XSS attack when following the links on
said start pages, we initially count all blocked executions
of JavaScript as false positives. In total, our crawler
visited 981,453 different URLs, consisting of a total of

9,304,036 frames. The percentages in the following are
relative to the number of frames we analyzed.

6.1.2 Compatibility of JavaScript Parsing Rules

In total, our crawler encountered and subsequently re-
ported taint exceptions, i.e., violations of the aforemen-
tioned policy for tainted tokens, in 5,979 frames. In the
next step, we determined the Alexa ranks for all frames
which caused exceptions, resulting in a total of 50 do-
mains. Manual analysis of the data showed that on each
of these 50 domains, only one JavaScript code snippet
was responsible for the violation of our parsing policy.
Out of these 50 issues, 23 were caused by data stemming
from a postMessage, whereas the remaining 27 could be
attributed to data originating from the URL. With respect
to the analyzed data set this means that the proposed pol-
icy for parsing tainted JavaScript causes issues on 0.50%
of the domains we visited, whereas in total only 0.06%
of the analyzed frames caused issues.

To get a better insight into whether these false positive
were in fact caused by vulnerable JavaScript snippets, we
manually tried to exploit the flows which had triggered a
parsing violation. Out of the 23 issues related to data
from postMessages, we found that one script did not em-
ploy proper origin checking, allowing us to exploit the
insecure flow. Of the 27 other scripts which were not us-
ing data from postMessages, we were able to exploit 21
scripts and hence 21 additional domains. This constitutes
a total number of 50 domain on which one functional-
ity caused a false positive, while 22 domains contained
an actual vulnerability in just the functionality our filter
blocked.
Importance of JSON-handling policy As we outlined
in Section 5.3, we do allow for postMessages to con-
tain tainted JSON which is automatically selectively un-
tainted by our prototype. To motivate the necessity for
this decision, we initially also gathered taint exceptions
caused by tainted JSON (stemming from postMessages)
being parsed by eval. This analysis showed that next to
the 5,979 taint exceptions we had initially encountered,
90,937 additional documents utilized tainted JSON from
postMessages in a policy-violating manner. Albeit, with
respect to our data set, this only caused issues with less
than 1% of all documents we analyzed, it puts emphasis
on the necessity for our proposed selective untainting,
whereas on the other hand, it also shows that program-
mers utilize eval quite often in conjunction with JSON
exchanged via postMessages.

6.1.3 Compatibility of HTML Injection Rules

As discussed in the Section 5.2, our modified browser
blocks the execution of external scripts if any character

in the domain name of the external script resources is
tainted – only exempting those scripts that are located
on the same domain as the including document. Anal-
ogous to what we had investigated with respect to the
JavaScript parsing policy, we wanted to determine in how
many applications we would potentially break function-
ality when employing the proposed HTML parsing pol-
icy. We therefore implemented a reporting feature for
any tainted HTML and a blocking feature for policy-
violating HTML. This feature would always send a re-
port containing the URL of the page, the HTML to be
parsed, as well as the exact taint information to the back-
end. We will go into further detail on injected HTML
in Section 7 and will now focus on all those tainted
HTML snippets which violate the policy we defined in
Section 5.2.

During our crawl, 8,805 out of the 9,304,036 docu-
ments we visited triggered our policy of tainted HTML,
spreading across 73 domains. Out of these, 8,667 vio-
lations (on 67 domains) were caused by script elements
with src attributes containing one or more tainted char-
acters in the domain of the included external script. Out
of the remaining six domains, we found that three uti-
lized base.href such that the domain name contained
tainted characters and thus, our prototype triggered a pol-
icy exception on these pages. Additionally, two domains
used policy-violating input.formaction attributes and
the final remaining domain had a tainted domain name in
an embed.src attribute. In total, this sums up to a false
positive rate of 0.09% with respect to documents as well
as 0.73% for the analyzed domains.

Subsequently, we analyzed the 73 domains which uti-
lized policy violation HTML injection to determine how
many of them were susceptible to a DOM-based XSS at-
tack. In doing so, we found that we could exploit the
insecure use of user-provided data in the HTML parser
in 60 out of 73 cases.

6.1.4 Compatibility of DOM API Rules

As we discussed previously we also examine as-
signments to security-critical DOM properties like
script.src or base.href and block them according
to our policy. In our compatibility crawl, our engine
blocked such assignments on 60 different domains in 182
documents, whereas the largest amount of blocks could
be attributed to script.src. Noteworthy in this in-
stance is the fact that 45 out of these 60 blocks interfered
with third-party advertisement by only two providers.

After having counted the false positive, we yet again
tried to exploit the flows that had been flagged as ma-
licious by our policy enforcer. Out of the 60 domains
our enforcer had triggered a block on, we verified that
eight constitute exploitable vulnerabilities. In compari-

exploitable
documents domains domains

JavaScript 5,979 50 22
HTML 8,805 73 60
DOM API 182 60 8

Sum 14,966 183 90

Table 1: False positives by blocking component

son to the amount of exploitable blocks we had encoun-
tered for the JavaScript and HTML injection polices this
number seems quite low. This is due to the fact that both
the aforementioned advertisement providers employed
whitelisting to ensure that only script content hosted on
their domains could be assigned. In total, this sums up
to 0.60% false positives with respect to domains and just
0.002% of all analyzed documents.

6.1.5 Summary

In this section we evaluated the false positive rate of our
filter. In total, the filtering rules inside the JavaScript
parser, the HTML parser and the security-sensitive DOM
APIs caused issues on 14,966 document across 183
domains. Considering the data set we analyzed this
amounts to a false positive ratio of 0.16% for all ana-
lyzed documents and 1.83% for domains. Noteworthy
in this instance is however the fact that out of the 183
domains on which our filter blocked a single functional-
ity, 90 contained actual verified vulnerabilities in just that
functionality. Table 1 shows the number of documents
and domains on which our policy caused false positive,
also denoting in which of the different policy-enforcing
components the exception was generated as well as the
amount of domains in which the blocked functionality
caused an exploitable vulnerability.

6.2 Protection
To ensure that our protection scheme does not perform
worse than the original Auditor, we re-ran all exploits
that successfully triggered when the Auditor was dis-
abled. All exploits were caught by the JavaScript parser,
showing that our scheme is at least as capable of stopping
DOM-based Cross-Site Scripting as the Auditor.

To verify the effectiveness of our proposed protec-
tion scheme, we ran all generated exploits and bypasses
against our newly designed filter. To minimize side-
effects, we also disabled the XSS Auditor completely to
ensure that blocking would only be conducted by our
filtering mechanism. As we discussed in Section 4.2,
alongside the scoping-related issues that were responsi-
ble for the successful bypassing of the Auditor by the

first generation of exploits, other issues related to string
matching arose. In the following, we briefly discuss our
protection scheme with respect to stopping these kinds
of exploits.

Scoping: eval and innerHTML In contrast to the
XSS Auditor our filtering approach is fully capable of
blocking injections into eval due to the fact that it is im-
plemented directly in the JavaScript parser. In the XSS
Auditor, innerHTML is not checked for performance rea-
sons. To check whether a given token was generated
from a tainted source, a simple boolean flag has to be
checked, therefore we do not have these performance-
inhibiting issues.

Injection attacks targeting DOM APIs In our ex-
periments, we did not specifically target the direct as-
signment to security-critical DOM API properties. In-
side the API, analogous to the HTML parser, assign-
ment to one of these critical properties might cause di-
rect JavaScript execution (such as a javascript: URL
for an iframe.src) or trigger loading of remote content.
For the first case, our taint tracking approach is capable
of persisting the taint information to the execution of the
JavaScript contained in the URL and hence, the DOM
API does not have to intervene. For the loading of re-
mote content, the rules of the HTML parser are applied,
disallowing the assignment of the property if the domain
name contains tainted characters.

Partial injection One of the biggest issues, namely
partial injection, was stopped at multiple points in our
filter. Depending on the element and attribute which
could be hijacked, the attack vector either consisted of
injected JavaScript code or of an URL attribute used to
retrieve foreign content (e.g. through script.src). For
the direct injection of JavaScript code, the previously dis-
cussed JavaScript parser was able to stop all exploit pro-
totypes whereas for exploits targeting URL attributes the
taint-aware HTML parser successfully detected and re-
moved these elements, thus stopping the exploit.

Trailing content and double injection The bypasses
which we categorized as trailing content are targeting
a weakness of the Auditor, specifically the fact that it
searches for completely injected tags whereas double in-
jection bypasses take advantage of the same issue. Both
trailing content and double injections can be abused to
either inject JavaScript code or control attributes which
download remote script content. Hence, analogous to
partial injection, the filtering rules in the HTML and
JavaScript parsers could in conjunction with the precise
origin information stop all exploits.

Second order flows and alternative attack vectors
Similar to injection attacks targeting the direct assign-
ment of DOM properties through JavaScript, we did not
generate any exploits for second order flows. Neverthe-
less, we persist the taint information through intermedi-

ary sources like the WebStorage API. Therefore, our pro-
totype is fully capable of detecting the origin of data from
these intermediary source and can thus stop these kinds
of exploits as well. As for postMessages, window.name
and document.referer, our implementation taints all
these sources of potentially attacker-controlled data and
is hence able to stop all injection attacks pertaining to
these sources.

Application-specific input mutation Our engine
propagates taint information through string modification
operations. Therefore, it does not suffer the drawbacks of
current implementations based on string matching. All
exploits targeting vulnerabilities belonging to this class
were caught within our HTML and JavaScript parsers.

6.3 Performance
In order to evaluate the performance of our imple-
mentation we conducted experiments with the popular
JavaScript benchmark suites Sunspider, Kraken, and Oc-
tane as well as the browser benchmark suite Dromaeo.
Sunspider was developed by the WebKit authors to “fo-
cus on short-running tests [that have] direct relevance to
the web” [28]. Google has developed Octane which in-
cludes “5 new benchmarks created from full, unaltered,
well-known web applications and libraries” [5]. Mozilla
has developed Kraken which “focuses on realistic work-
loads and forward-looking applications” [15]. Dromaeo,
which is a combination of several JavaScript and HTM-
L/DOM tests, finally serves as a measure of the overall
impact our implementation has on the everyday browsing
experience.

All tests ultimately lead to a single numerical value,
either being a time needed for a run (the lower the bet-
ter) or a score (the higher the better), reflecting the per-
formance of the browser under investigation. For run-
time (score) values the results were divided by the values
obtained for the unmodified version of the Web browser
(vice versa). These serve as the baseline for our further
comparisons. With the obtained results we computed a
slowdown factor reflecting how many times slower our
modified version is. To set these numbers into context,
we also evaluated other popular Web browsers, namely
Internet Explorer 11 and Firefox 26.0. To eliminate side
effects of, e.g., the operating system or network latency,
we ran each of the benchmarking suites locally for ten
times using an Intel Core i7 3770 with 16GB of RAM.
All experiments, apart from Internet Explorer, were con-
ducted in a virtual machine running Ubuntu 13.04 64-
bit on that system whereas IE was benchmarked natively
running Windows 7.

Table 2 shows the results of our experiments. To as-
certain a baseline for our measurements we ran all bench-
marks on a vanilla build of Chromium. The table shows
the mean results (in points or milliseconds) as well as the

standard error and the slowdown factor for each test and
browser. Internet Explorer employs an optimization to
detect and remove dead code, causing it to have signif-
icantly better performance under the Sunspider bench-
mark than the other Web browsers [40]. As the results
generated by all browsers under the Kraken benchmark
were varying rather strongly, we ran the browsers in our
virtual machines 50 times against the Kraken benchmark.
Regardless, we still see a rather high standard error of the
mean for all the browsers.

We chose the aforementioned tests because they
are widely used to evaluate the performance of both
JavaScript and HTML rendering engines. Nevertheless,
these tests are obviously not designed to perform opera-
tions on tainted strings. As we discussed in Section 5.4,
our engine usually only switches to this runtime im-
plementation if the operation is conducted on a tainted
string. In the initial runs, which is denoted in Table 2
as Tainted Best, our engine incurred slowdown factors of
1.08, 1.01, 1.16 and 1.05, resulting in an average slow-
down factor of 7%. Since the tests are not targeting the
usage of tainted data, we conducted a second run. This
time we modified our implementation to treat all strings
as being tainted, forcing it to use as much of our new
logic as possible. In this, the performance was naturally
worse than in the first run. More precisely, by calculating
the average over the observed slowdown factors for our
modified (denoted as Tainted Worst) version, we see that
our implementation incurs, in the worst case, an over-
head of 17% compared to the vanilla version. While the
performance hit is significant, we will elaborate on pos-
sible performance improvements in the next section.

6.4 Discussion
In this section we evaluated compatibility, protection ca-
pability as well as performance of our proposed filter
against DOM-based Cross-Site Scripting. In the follow-
ing we will briefly discuss the implications of these eval-
uations.

In our compatibility crawl we found that 183 of the
10,000 domains we analyzed had one functionality that
was incompatible with our policies for the JavaScript
parser, the HTML parser and the DOM APIs. Although
this number appears to be quite high at first sight it also
includes 90 domains on which we could successfully a
vulnerability in just the functionality that was blocked
by our filter. On the other hand, the total number of do-
mains, which our approach protected from a DOM-based
XSS attack amounts to 958. Although the XSS Auditor
is not designed to combat DOM-based XSS attacks, it is
the only currently employed defense for Google Chrome
against such attacks. As we discussed in Section 4.3,
the Auditor could be bypassed on 81% of these domains,
protecting users on only 183 domains in our initial data

Dromaeo Octane Kraken (ms) Sunspider (ms)

Baseline 1167.4 1.89 – 20177.9 64.47 – 1418.9 94.29 – 169.02 0.37 –
Tainted Best 1082.6 2.40 1.08 19851.0 54.54 1.01 1653.1 59.84 1.16 178.03 0.70 1.05
Tainted Worst 1015.6 1.93 1.15 18168.7 70.24 1.11 1814.4 64.55 1.27 192.66 0.26 1.14

Firefox 26.0 721.7 2.94 1.62 16958.5 97.40 1.19 1291.3 1.14 0.91 171.86 0.65 1.02
IE 11 607.0 2.13 1.92 17247.2 47.15 1.17 1858.5 4.16 1.31 78.05 0.13 0.46

Table 2: Benchmark results, showing mean, standard error and slowdown factor for all browsers and tests

set. This shows that with respect to its protection capa-
bilities our approach is more reliable than currently de-
ployed techniques, which do not offer protection against
this type of attack.

Apart from reliable protection and a low false posi-
tive rate, one requirement for a browser-based XSS fil-
ter is its performance. Our performance measurements
showed that our implementation incurs an overhead be-
tween 7 and 17%. Chrome’s JavaScript engine V8 draws
much of its superior performance from utilizing so-called
generated code, i.e., ASM code generated directly from
macros. To allow for a small margin for error, we opted
to implement most of the logic – such as copying of taint
information – in C++ runtime code. We realize that the
performance impact of our current prototype might be
too high to allow for productive deployment in Chrome.
Nevertheless, we believe that an optimized implementa-
tion making more frequent use of said generated code
would ensure better performance and possibly allow for
deployment of our approach.

Our approach only aims at defeating DOM-based
Cross-Site Scripting while the XSS Auditor’s focus is on
reflected XSS. We therefore believe that deployment be-
sides the Auditor is a sound way of implementing a more
robust client-side XSS filter, capable of handling both re-
flected and DOM-based XSS.

7 Outlook: HTML Injection
As we discussed in Section 5.4, our engine allows for
precise tracking of tainted data throughout the execution
of a program and hence, also to the HTML parser. There-
fore, our approach also enables the browser to precisely
block all attacker-injected HTML even it is not related
to Cross-Site Scripting. Although this was out of scope
for this work, we believe that it is relevant future work.
Therefore, we give a short glimpse into the current state
of the Web with respect to partially tainted HTML passed
to the parser.

As we discussed in Section 6.1, we conducted a com-
patibility crawl of the Alexa Top 10,000 in which we
analyzed a total of 9,304,036 documents, out of which
632,109 generated 2,393,739 tainted HTML reports.
Typically, each of the HTML snippets contained the def-

inition of more than one tag. In total, we found that pars-
ing the snippets yielded in 3,650,506 tainted HTML el-
ements whereas we consider an element tainted if either
the tag name, any attribute name or any attribute value is
tainted. Considering the severity of attacker-controllable
HTML snippets, we distinguish between four types:

1. Tag injection (TI): the adversary can inject a tag
with a name of his choosing.

2. Attribute injection (AI): injection of the complete
attribute, namely both name and value

3. Full attribute value injection (FAVI): full control
over the value, but not the name

4. Partial attribute value injection (PAVI): attacker
only controls part of the attribute

We analyzed the data we gathered in our crawl to de-
termine whether blocking of tainted HTML data is feasi-
ble and if so, with what policy. Our analysis showed that
out of the Top 10,000 Alexa domains, just one made use
of full tag injection, injecting a p tag originating from a
postMessage. This leads us to believe that full tag in-
jection with tainted data is very rare and not common
practice.

The analysis also unveiled that the most frequently
tainted elements – namely a, script, iframe and img –
made up for 3,503,655 and thus over 95% of all ele-
ments containing any tainted data. Hence, we focused
our analysis on these and examined which attributes were
tainted. Analogous to our definition of a tainted element,
we consider an attribute to be tainted if either its name or
value contains any tainted characters. Considering this
notion, we – for each of the four elements – ascertained
which attribute is most frequently injected using tainted
data. For a elements, the most frequent attribute con-
taining tainted data was href whereas script, iframe
and img tags mostly had tainted src attributes. Although
we found no case where the name of an attribute was
tainted, we found a larger number of elements with full
attribute value injection. The results of our study are de-
picted in Table 3, which shows the absolute numbers of
occurrences. We also gathered reports from documents

FAVI PAVI
Top 10k all Top 10k all

iframe.src 349 2,222 384,946 438,415
script.src 4,215 8,667 1,078,015 1,292,046
a.href 124,812 133,838 1,162,093 1,191,598
img.src 5,128 6,791 275,579 312,033

Domains 799 1,014 4,446 6,772

Table 3: Amounts of full and partial value injection for
domains in the Alexa Top 10,000 and beyond.

on domains not belonging to the Alexa Top 10,000 as
content is often included from those. The first number
in each column gives the amount for documents on the
Alexa Top 10,000, whereas the second number shows the
number for all documents we crawled.

Summarizing, we ascertain that taint tracking in the
browser can also be used to stop HTML injection. Our
study on tainted HTML content on the Alexa Top 10,000
domains has shown that blocking elements with tainted
tag names is a viable way of providing additional secu-
rity against attacks like information exfiltration [7] while
causing just one incompatibly. We also discovered that
the applications we crawled do not make use of tainted
attribute names, hence we assume that blocking tainted
attributes does also not cause incompatibilities with the
current Web. In contrast, blocking HTML that either
has fully or partially tainted attribute values does not ap-
pear to be feasible since our analysis showed that 8%
of all domains make use of fully tainted attribute values
whereas more than 44% used partially tainted values in
their element’s attributes. As there is an overlap between
these two groups of domains, the total number of do-
mains that would causes incompatibilities is 4,622, thus
resulting in more than 46% incompatibilities. Thus, we
established that although blocking HTML is technically
possible with our implementation this would most likely
break a large number of applications.

8 Related work
XSS Filter As already mentioned earlier, the conceptu-
ally closest work to this paper is Bates et al.’s [2] analysis
of regular expression-based XSS filters and the subse-
quent proposal of the methodology that constitutes the
basis for the XSS Auditor. Furthermore, Pelizzi and
Sekar [26] proposed potential improvements for Bates
et al.’s method in order to address the problem of partial
injections. Similar to what Bates et al. discussed, they in-
strument the HTML parser and apply approximate string
matching inside it. Due to the fact that DOM-based
XSS allows an attacker to make use of insecure calls to

eval as well as direct assignments to security-sensitive
DOM APIs, it is still susceptible to some bypasses we
discussed. Furthermore, the presented approach is not
fully evaluated, especially with respect to the occurring
false positive rate. Besides this, and the other two major
browser-based XSS filters [21, 29], the majority of XSS
protection approaches, such as [23, 14, 24, 35], reside on
the server-side.

Filter evasion is an active topic especially in the of-
fensive community. Academic approaches in this area
include, for instance, the work by Heiderich et al. on
SVG-based evasions [11] and filter evasion by misusing
browser-based parser quirks and mutations [12] as well
as approaches that rely on parser confusion and poly-
glots, such as Barth et al. [1] and Magazinius et al. [19].

Dynamic taint tracking Taint propagation is a well
established tool to address injection attacks. After its
initial introduction within the Perl interpreter [37], vari-
ous server-side approaches have been presented that rely
on this technique [25, 27, 33, 24, 3]. In 2007, Vogt et
al. [36] pioneered browser-based dynamic taint tracking,
employing the technique to prevent the leakage of sensi-
tive data to a remote attacker rather than trying to prevent
the attack itself. The first work to utilize taint tracking for
the detection of DOM-based XSS was DOMinator [8],
which was later followed by FLAX [31] and Lekies et
al. [18]. For NDSS 2009, Sekar [32] proposed and im-
plemented a scheme for taint inference, speeding up taint
tracking approaches which had been presented up to this
point.

9 Conclusion

In this paper we presented the design, implementation
and thorough evaluation of a client-side countermea-
sure which is capable to precisely and robustly stop
DOM-based XSS attacks. Our mechanism relies on the
combination of a taint-enhanced JavaScript engine and
taint-aware parsers which block the parsing of attacker-
controlled syntactic content. Existing measures, such as
the XSS Auditor, are still valuable to combat XSS in
cases that are out of scope of our approach, namely XSS
which is caused by vulnerable data flows that traverse the
server.

In case of client-side vulnerabilities, our approach reli-
ably and precisely detects injected syntactic content and,
thus, is superior in blocking DOM-based XSS. Although
our current implementation induces a runtime overhead
between 7 and 17%, we believe that an efficient na-
tive integration of our approach is feasible. If adopted,
our technique would effectively lead to an extinction of
DOM-based XSS and, thus, significantly improve the se-
curity properties of the Web browser overall.

Acknowledgment
This work was in parts supported by the EU Projects
WebSand (FP7-256964) and STREWS (FP7-318097).
The support is gratefully acknowledged. The authors
would also like to thank Sven Kälber for providing the
computational power to conduct our data collection as
well as the anonymous reviewers and our shepherd Adri-
enne Porter Felt for their help comments and support.

References

[1] Adam Barth, Juan Caballero, and Dawn Song. Se-
cure content sniffing for web browsers, or how to
stop papers from reviewing themselves. In Security
and Privacy, 2009 30th IEEE Symposium on, pages
360–371. IEEE, 2009.

[2] Daniel Bates, Adam Barth, and Collin Jackson.
Regular expressions considered harmful in client-
side xss filters. In Proceedings of the 19th inter-
national conference on World wide web, pages 91–
100. ACM, 2010.

[3] Prithvi Bisht and VN Venkatakrishnan. Xss-guard:
precise dynamic prevention of cross-site script-
ing attacks. In Detection of Intrusions and Mal-
ware, and Vulnerability Assessment, pages 23–43.
Springer, 2008.

[4] Hristo Bojinov, Elie Bursztein, and Dan Boneh.
Xcs: cross channel scripting and its impact on web
applications. In Proceedings of the 16th ACM con-
ference on Computer and communications security,
pages 420–431. ACM, 2009.

[5] Stefano Cazzulani. Octane: the javascript
benchmark suite for the modern web. Online,
http://blog.chromium.org/2012/08/octane
-javascript-benchmark-suite-for.html,
August 2012.

[6] CERT. Advisory ca-2000-02 malicious html
tags embedded in client web requests. [on-
line], http://www.cert.org/advisories/CA
-2000-02.html, February 2000.

[7] Eric Y Chen, Sergey Gorbaty, Astha Singhal, and
Collin Jackson. Self-exfiltration: The dangers of
browser-enforced information flow control. In Pro-
ceedings of the Workshop of Web, volume 2. Cite-
seer, 2012.

[8] Stefano Di Paola. DominatorPro: Securing Next
Generation of Web Applications. [online], https:
//dominator.mindedsecurity.com/, 2012.

[9] Serge Egelman, Lorrie Faith Cranor, and Jason
Hong. You’ve been warned: an empirical study
of the effectiveness of web browser phishing warn-
ings. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pages
1065–1074. ACM, 2008.

[10] Steve Hanna, Richard Shin, Devdatta Akhawe, Ar-
man Boehm, Prateek Saxena, and Dawn Song. The
emperors new apis: On the (in) secure usage of new
client-side primitives. In Proceedings of the Web,
volume 2, 2010.

[11] Mario Heiderich, Tilman Frosch, Meiko Jensen,
and Thorsten Holz. Crouching tiger-hidden pay-
load: security risks of scalable vectors graphics. In
Proceedings of the 18th ACM conference on Com-
puter and communications security, pages 239–
250. ACM, 2011.

[12] Mario Heiderich, Jörg Schwenk, Tilman Frosch,
Jonas Magazinius, and Edward Z Yang. mxss at-
tacks: attacking well-secured web-applications by
using innerhtml mutations. In Proceedings of the
2013 ACM SIGSAC conference on Computer &
communications security, pages 777–788. ACM,
2013.

[13] Cormac Herley. So long, and no thanks for the ex-
ternalities: the rational rejection of security advice
by users. In Proceedings of the 2009 workshop on
New security paradigms workshop, pages 133–144.
ACM, 2009.

[14] Omar Ismail, Masashi Etoh, Youki Kadobayashi,
and Suguru Yamaguchi. A proposal and imple-
mentation of automatic detection/collection system
for cross-site scripting vulnerability. In Advanced
Information Networking and Applications, 2004.
AINA 2004. 18th International Conference on, vol-
ume 1, pages 145–151. IEEE, 2004.

[15] Erica Jostedt. Release the kraken. On-
line, https://blog.mozilla.org/blog/2010/
09/14/release-the-kraken-2/, Sept. 2010.

[16] Amit Klein. Dom based cross site scripting or xss
of the third kind. Web Application Security Consor-
tium, Articles, 4, 2005.

[17] Andreas Kling. Xssauditor performance regression
due to threaded parser changes. [online], https:
//gitorious.org/webkit/webkit/commit/aa
ad2bd7c86f78fe66a4c709192e3b591c557e7a,
April 2013.

[18] Sebastian Lekies, Ben Stock, and Martin Johns.
25 million flows later: large-scale detection of
dom-based xss. In Proceedings of the 2013 ACM
SIGSAC conference on Computer & communica-
tions security, pages 1193–1204. ACM, 2013.

[19] Jonas Magazinius, Billy K Rios, and Andrei
Sabelfeld. Polyglots: crossing origins by crossing
formats. In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications secu-
rity, pages 753–764. ACM, 2013.

[20] Georgio Maone. Noscript. [online], http://www.n
oscript.net/whats.

[21] Georgio Maone. Noscripts anti-xss protection. [on-
line], http://noscript.net/featuresxss.

[22] Georgio Maone. Noscripts anti-xss filters partially
ported to ie8. [online], http://hackademix.net
/2008/07/03/noscripts-anti-xss-filters

-partially-ported-to-ie8/, July 2008.

[23] Raymond Mui and Phyllis Frankl. Preventing web
application injections with complementary charac-
ter coding. In Computer Security–ESORICS 2011,
pages 80–99. Springer, 2011.

[24] Yacin Nadji, Prateek Saxena, and Dawn Song. Doc-
ument structure integrity: A robust basis for cross-
site scripting defense. In NDSS, 2009.

[25] Anh Nguyen-Tuong, Salvatore Guarnieri, Doug
Greene, Jeff Shirley, and David Evans. Automat-
ically hardening web applications using precise
tainting. Springer, 2005.

[26] Riccardo Pelizzi and R. Sekar. Protection, usability
and improvements in reflected xss filters. In Asi-
aCCS, May 2012.

[27] Tadeusz Pietraszek and Chris Vanden Berghe. De-
fending against injection attacks through context-
sensitive string evaluation. In Proceedings of the
8th international conference on Recent Advances
in Intrusion Detection, RAID’05, pages 124–145,
Berlin, Heidelberg, 2006. Springer-Verlag.

[28] Filip Pizlo. Announcing sunspider 1.0. [on-
line], https://www.webkit.org/blog/2364/an
nouncing-sunspider-1-0/, April 2013.

[29] David Ross. IE 8 XSS Filter Architecture / Imple-
mentation. [online], http://blogs.technet.c
om/b/srd/archive/2008/08/19/ie-8-xss-f

ilter-architecture-implementation.aspx,
August 2008.

[30] David Ross. IE8 Security Part IV: The XSS Filter.
[online], http://blogs.msdn.com/b/ie/arch
ive/2008/07/02/ie8-security-part-iv-t

he-xss-filter.aspx, July 2008.

[31] Prateek Saxena, Steve Hanna, Pongsin Poosankam,
and Dawn Song. Flax: Systematic discovery of
client-side validation vulnerabilities in rich web ap-
plications. In NDSS, 2010.

[32] R Sekar. An efficient black-box technique for de-
feating web application attacks. In NDSS, 2009.

[33] Zhendong Su and Gary Wassermann. The essence
of command injection attacks in web applications.
In ACM SIGPLAN Notices, volume 41, pages 372–
382. ACM, 2006.

[34] Joshua Sunshine, Serge Egelman, Hazim Al-
muhimedi, Neha Atri, and Lorrie Faith Cranor.
Crying wolf: An empirical study of ssl warning ef-
fectiveness. In USENIX Security Symposium, pages
399–416, 2009.

[35] Mike Ter Louw and VN Venkatakrishnan.
Blueprint: Robust prevention of cross-site scripting
attacks for existing browsers. In Security and
Privacy, 2009 30th IEEE Symposium on, pages
331–346. IEEE, 2009.

[36] Philipp Vogt, Florian Nentwich, Nenad Jovanovic,
Christopher Kruegel, Engin Kirda, and Giovanni
Vigna. Cross Site Scripting Prevention with Dy-
namic Data Tainting and Static Analysis. In 14th
Annual Network and Distributed System Security
Symposium (NDSS 2007), 2007.

[37] Larry Wall, Tom Christiansen, and Jon Orwant.
Programming Perl. O’Reilly, 3rd edition, July
2000.

[38] Web Hypertext Application Technology Working
Group. Cross-document messaging. Online, http:
//www.whatwg.org/specs/web-apps/curren
t-work/multipage/web-messaging.html.

[39] WhiteHat Security. Website security statistics
report. [online], https://www.whitehatsec.c
om/assets/WPstatsReport 052013.pdf, May
2013.

[40] Windows Internet Explorer Engineering. Html5,
and real world site performance: Seventh ie9
platform preview available for developers. On-
line, http://blogs.msdn.com/b/ie/archive/
2010/11/17/html5-and-real-world-site-p

erformance-seventh-ie9-platform-previ

ew-available-for-developers.aspx.

